题目内容

已知n∈N*,数列{an}和{bn}满足a1=b1=6,a2=4,数列{bn}的前n项和为Sn且Sn+1=Sn+n+6,

(1)求证:{bn-2}是等比数列;

(2)若数列{an+1-an}(n∈N*)是公差为1的等差数列,试比较an与bn的大小.

解:(1)证明:当n≥2时,Sn+1=Sn+n+6,                       

Sn=Sn-1+n+5,                                                         

①-②,得bn+1=bn.+1                                                    

∴bn+1-2=(bn-2),即n≥2时{bn-2}是等比数列.

又S2=S1+1+6,∴b2=-b1+1+6-b1=4.

∴b2-2=(b1-2)=2,即n∈N*时{bn-2}是等比数列.                           

(2)由(1)知bn-2=(b1-2)·()n-1,即bn=2+8·()n.                          

由已知a2-a1=-2,∴an+1-an=(a2-a1)+(n-1)·1=n-3.

n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1=(n-4)+(n-5)+…+(-1)+(-2)+6

=.

n=1也合适.

∴an=(n∈N*).                                            

设f(n)=an-bn=n2-n+7-8·()n=(n-)2+-8·()n.                 

当n≥4时(n-)2+为n的增函数,-8·()n也为n的增函数,

∴当n≥4时有f(n)≥f(4)=,即an-bn.                              

又f(1)=f(2)=f(3)=0,∴对n∈N*都有an≥bn.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网