ÌâÄ¿ÄÚÈÝ
8£®¶¨Ò壺ÔÚÊýÁÐ{an}ÖУ¬ÈôÂú×ã$\frac{{a}_{n+2}}{{a}_{n+1}}$-$\frac{{a}_{n+1}}{{a}_{n}}$=d£¨n¡ÊN+£¬dΪ³£Êý£©£¬³Æ{an}Ϊ¡°µÈ²î±ÈÊýÁС±£®ÒÑÖªÔÚ¡°µÈ²î±ÈÊýÁС±{an}ÖУ¬a1=a2=1£¬a3=3£¬Ôò$\frac{{a}_{2015}}{{a}_{2013}}$£¨¡¡¡¡£©| A£® | 4¡Á20152-1 | B£® | 4¡Á20142-1 | C£® | 4¡Á20132-1 | D£® | 4¡Á20132 |
·ÖÎö È·¶¨$\frac{{a}_{n+1}}{{a}_{n}}$=1+2£¨n-1£©=2n-1£¬ÔÙ´úÈ룬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£ºÓÉÌâÒ⣬d=$\frac{{a}_{3}}{{a}_{2}}-\frac{{a}_{2}}{{a}_{1}}$=3-1=2£¬$\frac{{a}_{2}}{{a}_{1}}$=1£¬
¡à$\frac{{a}_{n+1}}{{a}_{n}}$=1+2£¨n-1£©=2n-1£¬
ÀûÓõþ³Ë·¨¿ÉµÃ$\frac{{a}_{2015}}{{a}_{2013}}$=$\frac{{a}_{2015}}{{a}_{2014}}¡Á\frac{{a}_{2014}}{{a}_{2013}}$=4¡Á20132-1£¬
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éж¨Ò壬¿¼²éÊýÁÐͨÏîµÄÇó½â£¬½âÌâµÄ¹Ø¼üÊǶÔж¨ÒåµÄÀí½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
20£®
ijµØÇøÔÚÁùÄêÄÚµÚxÄêµÄÉú²ú×ÜÖµy£¨µ¥Î»£ºÒÚÔª£©ÓëxÖ®¼äµÄ¹ØÏµÈçͼËùʾ£¬ÔòÏÂÁÐËĸöʱ¶ÎÖУ¬Éú²ú×ÜÖµµÄÄêÆ½¾ùÔö³¤ÂÊ×î¸ßµÄÊÇ£¨¡¡¡¡£©
| A£® | µÚÒ»Äêµ½µÚÈýÄê | B£® | µÚ¶þÄêµ½µÚËÄÄê | C£® | µÚÈýÄêµ½µÚÎåÄê | D£® | µÚËÄÄêµ½µÚÁùÄê |