题目内容
(文)已知向量
,
满足
•
=0,|
|=1,|
|=2,则|2
-
|=
.
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| 6 |
| 6 |
分析:由向量
,
满足
•
=0,|
|=1,|
|=2,知|2
-
|2=4
2+
2-4
•
=4
2+
2=4+2=6,由此能求出|2
-
|.
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
解答:解析:∵向量
,
满足
•
=0,|
|=1,|
|=2,
∴|2
-
|2=(2
-
)2=4
2+
2-4
•
=4
2+
2=4+2=6,
故|2
-
|=
.
故答案为:
.
| a |
| b |
| a |
| b |
| a |
| b |
∴|2
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
故|2
| a |
| b |
| 6 |
故答案为:
| 6 |
点评:本题考查平面向量的性质及其运算,是基础题,解题时要认真审题,仔细解答.
练习册系列答案
相关题目