题目内容

已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a3+b4=24,S5-b4=24.
(1)求数列{an}与{bn}的通项公式;
(2)对任意n∈N*,是否存在正实数λ,使不等式an-9≤λbn恒成立,若存在,求出λ的最小值,若不存在,说明理由.
(1)设数列{an}的公差为d,数列{bn}的公比为q,
∵a1=b1=2,a3+b4=24,S5-b4=24.
2+2d+2q3=24
10+10d-2q3=24
,解得
d=3
q=2

an=3n-1,bn=2n
(2)假设存在正实数λ,使不等式an-9≤λbn恒成立,
∴3n-1-9≤λ•2n,即λ≥
3n-10
2n
对任意n∈N*恒成立.
cn=
3n-10
2n

cn+1-cn=
3(n+1)-10
2n+1
-
3n-10
2n
=
13-3n
2n+1

当n≥5时,cn+1<cn,{cn}为单调递减数列;
当1≤n<5时,cn+1>cn,{cn}为单调递增数列.
c4=
1
8
c5=
5
32

所以当n=5时,cn取得最大值
5
32

所以要使λ≥
3n-10
2n
对任意n∈N*恒成立,
λ≥
5
32

λmin=
5
32
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网