题目内容
分析:作AP垂直于平面BDC,P是垂足,连接CP,DP,BP,CP,DP,BP分别是AC,AD,AB在平面ABC内的射影,由AC⊥BD,AB⊥CD,知点P是△BDC的垂心.故DP垂直于BC.由三垂线定理,知AD⊥BC.
解答:
解:作AP垂直于平面BDC,P是垂足,连接CP,DP,BP,
CP,DP,BP分别是AC,AD,AB在平面BCD内的射影,
∵AC⊥BD,
∴由三垂线定理的逆定理知BD⊥CP.
∵AB⊥CD,
∴由三垂线定理的逆定理知CD⊥BP
∴点P是△BDC的垂心.
∴DP垂直于BC.
由三垂线定理,知AD⊥BC.
CP,DP,BP分别是AC,AD,AB在平面BCD内的射影,
∵AC⊥BD,
∴由三垂线定理的逆定理知BD⊥CP.
∵AB⊥CD,
∴由三垂线定理的逆定理知CD⊥BP
∴点P是△BDC的垂心.
∴DP垂直于BC.
由三垂线定理,知AD⊥BC.
点评:本题考查空间中直线与直线之间的位置关系,是基础题.解题时要认真审题,仔细解答,注意三垂线定理及其逆定理的灵活运用.
练习册系列答案
相关题目