题目内容
已知椭圆(1)求椭圆C的方程;
(2)求
【答案】分析:(1)根据离心率为
,可得a2=
b2,根据椭圆的短半轴为半径的圆与直线x-y+
=0相切,可求b的值,从而可得椭圆的方程;
(2)由题意知直线AB的斜率存在,设直线PB的方程代入椭圆方程,利用韦达定理,及向量的数量积公式,即可确定
的取值范围.
解答:解:(1)由题意知 e=
=
,∴e2=
=
=
,即a2=
b2
又∵椭圆的短半轴为半径的圆与直线x-y+
=0相切
∴b=
=
,∴a2=4,b2=3,
故椭圆的方程为
(2)由题意知直线AB的斜率存在,设直线AB的方程为y=k(x-4).
疳直线方程y=k(x-4)代入椭圆方程可得:(3+4k2)x2-32k2x+64k2-12=0
由△>0得:1024k4-4(3+4k2)(64k2-12)>0,解得k2<
设A(x1,y1),B (x2,y2),则x1+x2=
,x1x2=
∴
∵
,
∴
∴
的取值范围是
点评:本题考查椭圆的几何性质,考查椭圆的标准方程,解题的关键是确定几何量之间的关系,利用直线与椭圆联立,结合韦达定理求解.
(2)由题意知直线AB的斜率存在,设直线PB的方程代入椭圆方程,利用韦达定理,及向量的数量积公式,即可确定
解答:解:(1)由题意知 e=
又∵椭圆的短半轴为半径的圆与直线x-y+
∴b=
故椭圆的方程为
(2)由题意知直线AB的斜率存在,设直线AB的方程为y=k(x-4).
疳直线方程y=k(x-4)代入椭圆方程可得:(3+4k2)x2-32k2x+64k2-12=0
由△>0得:1024k4-4(3+4k2)(64k2-12)>0,解得k2<
设A(x1,y1),B (x2,y2),则x1+x2=
∴
∵
∴
∴
点评:本题考查椭圆的几何性质,考查椭圆的标准方程,解题的关键是确定几何量之间的关系,利用直线与椭圆联立,结合韦达定理求解.
练习册系列答案
相关题目
已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为( )
A、
| ||||
B、
| ||||
C、
| ||||
| D、以上均不对 |
已知椭圆的离心率为
,焦点是(-3,0),(3,0),则椭圆方程为( )
| 1 |
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|