题目内容
已知关于x的方程x2-(t-2)x+t2+3t+5=0有两个实根,
=
+t
,且
=(-1,1,3),
=(1,0,-2).
(1)若|
|=f(t),求f(t);
(2)问|
|是否能取得最大值?若能,求出实数t的值,并求出相应的向量
与
的夹角的余弦值;若不能,试说明理由.
| c |
| a |
| b |
| a |
| b |
(1)若|
| c |
(2)问|
| c |
| b |
| c |
分析:(1)由题设知
=
+t
=(-1,1,3)+(t,0,-2t)=(-1+t,1,3-2t),再由|
|=f(t),能求出f(t).
(2)由|
| =
,|
| =
,
•
=-7,知|
+t
|2=|
| 2t2+2(
•
)t+|
| 2
=5t2-14t+5=5(t-
)2-
.当t=
时,|
+t
|最小.再由关于x的方程x2-(t-2)x+t2+3t+5=0有两个实根,解得
≤t≤4.因为
∈[
,4],|
|能取得最大值.由此能求出求出相应的向量
与
的夹角的余弦值.
| c |
| a |
| b |
| c |
(2)由|
| a |
| 11 |
| b |
| 5 |
| a |
| b |
| a |
| b |
| b |
| a |
| b |
| a |
=5t2-14t+5=5(t-
| 7 |
| 5 |
| 24 |
| 5 |
| 7 |
| 5 |
| a |
| b |
| 4 |
| 3 |
| 7 |
| 5 |
| 4 |
| 3 |
| c |
| b |
| c |
解答:解(1)∵
=(-1,1,3),
=(1,0,-2),
∴
=
+t
=(-1,1,3)+(t,0,-2t)
=(-1+t,1,3-2t),
∴f(t)=|
|=
=
.
(2)∵
=(-1,1,3),
=(1,0,-2).
∴|
| =
,|
| =
,
•
=-7,
∴|
+t
|2=|
| 2t2+2(
•
)t+|
| 2
=5t2-14t+5
=5(t-
)2-
∴当t=
时,|
+t
|最小,
∵关于x的方程x2-(t-2)x+t2+3t+5=0有两个实根,
∴△=[-(t-2)]2-4(t2+3t+5)≥0,
解得
≤t≤4.
∵
∈[
,4],
∴|
|能取得最大值.
当|
|取得最大时,
=
+t
=(-1,1,3)+(
,0,-
)=(
,1,
),
cos<
,
>=
=0.
| a |
| b |
∴
| c |
| a |
| b |
=(-1+t,1,3-2t),
∴f(t)=|
| c |
| (t-1)2+1+(3-2t)2 |
=
| 5t2-14t+11 |
(2)∵
| a |
| b |
∴|
| a |
| 11 |
| b |
| 5 |
| a |
| b |
∴|
| a |
| b |
| b |
| a |
| b |
| a |
=5t2-14t+5
=5(t-
| 7 |
| 5 |
| 24 |
| 5 |
∴当t=
| 7 |
| 5 |
| a |
| b |
∵关于x的方程x2-(t-2)x+t2+3t+5=0有两个实根,
∴△=[-(t-2)]2-4(t2+3t+5)≥0,
解得
| 4 |
| 3 |
∵
| 7 |
| 5 |
| 4 |
| 3 |
∴|
| c |
当|
| c |
| c |
| a |
| b |
| 7 |
| 5 |
| 14 |
| 5 |
| 2 |
| 5 |
| 1 |
| 5 |
cos<
| b |
| c |
| ||||||||
|
点评:本题考查平面向量的综合运用,综合性强,是高考的重点,易错点是知识体系不牢固.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
练习册系列答案
相关题目