题目内容

设正项数列{an}的前n项之和Sn满足Sn=
1
2
(an+
n
an
)(n∈N*)

(1)求Sn
(2)证明:
1
S
2
1
+
1
S
2
2
+…+
1
S
2
n
<2
分析:(1)当n≥2时,利用an=Sn-Sn-1,可得Sn2-Sn-12=n,再用叠加法,即可得到结论;
(2)利用裂项法,再用放缩法,可得结论.
解答:(1)解:当n=1时,S1=
1
2
(a1+
1
a1
)

∵a1>0,∴a1=1;
当n≥2时,an=Sn-Sn-1,∴Sn=
1
2
(Sn-Sn-1+
n
Sn-Sn-1
)

Sn2-Sn-12=n
Sn2=(Sn2-Sn-12)+(Sn-12-Sn-22)+…+(S22-S12)+S12=n+(n-1)+…+2+1=
n(n+1)
2

∵an>0,Sn>0,∴Sn=
n(n+1)
2

(2)证明:∵
1
Sn2
=
2
n(n+1)
=2(
1
n
-
1
n+1

1
S
2
1
+
1
S
2
2
+…+
1
S
2
n
=2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]=2(1-
1
n+1
)<2.
点评:本题考查数列递推式,考查叠加法、裂项法的运用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网