题目内容
设正项数列{an}的前n项之和Sn满足Sn=
(an+
)(n∈N*)
(1)求Sn;
(2)证明:
+
+…+
<2.
| 1 |
| 2 |
| n |
| an |
(1)求Sn;
(2)证明:
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
分析:(1)当n≥2时,利用an=Sn-Sn-1,可得Sn2-Sn-12=n,再用叠加法,即可得到结论;
(2)利用裂项法,再用放缩法,可得结论.
(2)利用裂项法,再用放缩法,可得结论.
解答:(1)解:当n=1时,S1=
(a1+
),
∵a1>0,∴a1=1;
当n≥2时,an=Sn-Sn-1,∴Sn=
(Sn-Sn-1+
),
∴Sn2-Sn-12=n
∴Sn2=(Sn2-Sn-12)+(Sn-12-Sn-22)+…+(S22-S12)+S12=n+(n-1)+…+2+1=
∵an>0,Sn>0,∴Sn=
;
(2)证明:∵
=
=2(
-
)
∴
+
+…+
=2[(1-
)+(
-
)+…+(
-
)]=2(1-
)<2.
| 1 |
| 2 |
| 1 |
| a1 |
∵a1>0,∴a1=1;
当n≥2时,an=Sn-Sn-1,∴Sn=
| 1 |
| 2 |
| n |
| Sn-Sn-1 |
∴Sn2-Sn-12=n
∴Sn2=(Sn2-Sn-12)+(Sn-12-Sn-22)+…+(S22-S12)+S12=n+(n-1)+…+2+1=
| n(n+1) |
| 2 |
∵an>0,Sn>0,∴Sn=
|
(2)证明:∵
| 1 |
| Sn2 |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
点评:本题考查数列递推式,考查叠加法、裂项法的运用,属于中档题.
练习册系列答案
相关题目