题目内容

等差数列{an}中,a1=3,公差d=2,Sn为前n项和,求
1
S1
+
1
S2
+…+
1
Sn
分析:利用等差数列的求和公式求出Sn,再利用裂项法可求数列的和.
解答:解:∵等差数列{an}的首项a1=3,公差d=2,
∴前n项和Sn=na1+
n(n-1)
2
d=3n+
n(n-1)
2
×2=n2+2n(n∈N*)

1
Sn
=
1
n2+2n
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

1
S1
+
1
S2
+…+
1
Sn
=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+…+(
1
n-1
-
1
n+1
)+(
1
n
-
1
n+2
)]

=
3
4
-
2n+3
2(n+1)(n+2)
点评:本题考查数列的求和,考查裂项法的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网