ÌâÄ¿ÄÚÈÝ

2£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄÀëÐÄÂÊe=$\frac{1}{2}$£¬µãAΪÍÖÔ²ÉÏÒ»µã£¬$¡Ï{F_1}A{F_2}={60¡ã}£¬ÇÒ{S_{¡÷{F_1}A{F_2}}}$=$\sqrt{3}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©É趯ֱÏßl£ºkx+mÓëÍÖÔ²CÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µãP£¬ÇÒÓëÖ±Ïßx=4ÏཻÓÚµãQ£®ÎÊ£ºÔÚxÖáÉÏÊÇ·ñ´æÔÚ¶¨µãM£¬Ê¹µÃÒÔPQΪֱ¾¶µÄÔ²ºã¹ý¶¨µãM£¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉe=$\frac{1}{2}$¿ÉµÃ£¬a2=4c2£¬ÔÙ¸ù¾ÝÈý½ÇÐÎÃæ»ý¹«Ê½½âµÃÍÖÔ²·½³Ì£®
£¨2£©Ö±ÏߺÍÍÖÔ²ÁªÁ¢·½³Ì×飬µÃµ½µãP×ø±êÀûÓÃÖ±¾¶µÃ´¹Ö±¹ØÏµµÃµ½ÏàÓ¦¹ØÏµÊ½£¬´Ó¶øÁÐʽÇó½â£®

½â´ð ½â£º£¨1£©ÓÉe=$\frac{1}{2}$¿ÉµÃ£¬a2=4c2£¬¢Ù
${S}_{¡÷{F}_{1}A{F}_{2}}=\frac{1}{2}|A{F}_{1}||A{F}_{2}|sin60¡ã$¨T$\sqrt{3}$£¬¿ÉµÃ£¬|AF1||AF2|=4
ÔÚ¡÷F1AF2ÖÐÓÉÓàÏÒ¶¨ÀíÓУ¬$|{F}_{1}A{|}^{2}+|{F}_{2}A{|}^{2}-2|{F}_{1}A||{F}_{2}A|cos60¡ã$=4c2£¬ÓÖ|AF1|+|AF2|=2a
¿ÉµÃa2-c2=3¢Ú
ÁªÁ¢¢Ù¢ÚµÃ£¬a2=4£¬c2=1£¬¡àb2=3£¬
ËùÒÔÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$
£¨2£©ÉèµãP£¨x0£¬y0£©ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬µÃ
£¨4k2+3£©x2+8kmx+4m2-12=0
¡÷=64k2m2-4£¨4k2+3£©£¨4m2-12£©=0£¬»¯¼òµÃ4k2-m2+3=0£¬
¡à${x}_{0}=-\frac{4km}{4{k}^{2}+3}=-\frac{4k}{m}£¬{y}_{0}=\frac{3}{m}$
ËùÒÔP£¨$-\frac{4k}{m}£¬\frac{3}{m}$£©
ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{x=4}\end{array}\right.$£¬µÃQ£¨4£¬4k+m£©£¬¼ÙÉè´æÔÚµãM£¬×ø±êΪ£¨x1£¬0£©£¬Ôò$\overrightarrow{MP}=£¨-\frac{4k}{m}-{x}_{1}£¬\frac{3}{m}£©$£¬
$\overrightarrow{MQ}=£¨4-{x}_{1}£¬4k+m£©$£¬ÒòΪÒÔPQΪֱ¾¶µÄÔ²ºã¹ýµãM£¬ËùÒÔ$\overrightarrow{MP}•\overrightarrow{MQ}=0$£¬¼´$-\frac{16k}{m}+\frac{4k{x}_{1}}{m}-4{x}_{1}+{x}_{1}^{2}+\frac{12k}{m}+3=0$
ËùÒÔÓÐ$£¨4{x}_{1}-4£©\frac{k}{m}+{x}_{1}^{2}-4{x}_{1}+3=0$¶ÔÈÎÒâµÄk£¬m¶¼³ÉÁ¢£®
Ôò$\left\{\begin{array}{l}{4{x}_{1}-4=0}\\{{x}_{1}^{2}-4{x}_{1}+3=0}\end{array}\right.$½âµÃx1=1£¬¹Ê´æÔÚ¶¨µãM£¨1£¬0£©·ûºÏÌâÒ⣮

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÍÖÔ²·½³ÌµÄÇó½âºÍÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌ⣬Êô³£¿¼ÌâÐÍ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø