题目内容

已知(1+x+x2n=a+a1x+…+a2nx2n
(1)求a+a2+…+a2n的值   (2)求a1+2a2+…+2na2n的值.
【答案】分析:(1)令已知等式中的x分别取1,-1得到两个等式,两式相加得到要求的值.
(2)先对已知等式两边分别求导数得到一个新的等式,令新等式中的x=1求出要求的系数和.
解答:解:(1)令x=1得a+a1+a2+…+a2n=3n
令x=-1得a0-a1+a2+…+a2n=1
所以两式相加得a+a2+…+a2n=
(2)对等式求导数得n(1+x+x2n-1=a1+2a2x+3a3x2+…+2na2nx2n-1
令x=1得
a1+2a2+…+2na2n=3n-1
点评:求二项展开式中的系数和问题,常采用的方法是赋值法.此法的关键是通过观察给未知数赋什么值能得到要求的系数和.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网