题目内容
5.| A. | F′(x0)=0,x=x0是F(x)的极大值点 | B. | F′(x0)=0,x=x0是F(x)的极小值点 | ||
| C. | F′(x0)≠0,x=x0不是F(x)的极值点 | D. | F′(x0)≠0,x=x0是F(x)的极值点 |
分析 由F(x)=f(x)-g(x)在x0处先减后增,得到F′(x0)=0,x=x0是F(x)的极小值点.
解答 解:∵可导函数y=f(x)在点P(x0,f(x0))处切线为l:y=g(x),
∴F(x)=f(x)-g(x)在x0处先减后增,
∴F′(x0)=0,
x=x0是F(x)的极小值点.
故选B.
点评 本题考查函数在某点取得极值的条件的应用,是中档题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目
16.已知角α终边上一点P(2,-$\sqrt{5}$),则sinα等于( )
| A. | -$\frac{2}{3}$ | B. | -$\frac{\sqrt{5}}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{5}$ |
20.
如图梯形ABCD中,AD∥BC,对角线AC、BD交于点O,点M,N分别在两腰上,MN过点O,且MN∥AD,OM=ON,则AD,BC,MN满足的关系是( )
| A. | AD+BC=2MN | B. | AD•BC=MN2 | C. | $\frac{1}{AD}$+$\frac{1}{BC}$=$\frac{2}{MN}$ | D. | MN=$\sqrt{\frac{A{D}^{2}+B{C}^{2}}{2}}$ |
14.若a<4,则a-2小于( )
| A. | 2 | B. | 6 | C. | -2 | D. | 1 |