题目内容

12.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{6}}}{3}$,焦距为$4\sqrt{2}$,抛物线C2:x2=2py(p>0)的焦点F是椭圆C1的顶点.
(Ⅰ)求C1与C2的标准方程;
(Ⅱ)若C2的切线交C1于P,Q两点,且满足$\overrightarrow{FP}•\overrightarrow{FQ}=0$,求直线PQ的方程.

分析 (Ⅰ)设椭圆C1的焦距为2c,求得c,运用椭圆的离心率公式,可得a,b,进而得到椭圆方程;求得椭圆的上顶点,可得抛物线的焦点,进而得到抛物线的方程;
(II)显然直线PQ的斜率存在.设直线PQ的方程为y=kx+m,设P(x1,y1),Q(x2,y2),求得向量FP,FQ的坐标,运用向量的数量积的坐标表示,联立直线方程和椭圆方程,运用韦达定理,联立抛物线的方程,运用判别式为0,化简整理,计算即可得到k,m的值,进而得到所求直线方程.

解答 解:(Ⅰ)设椭圆C1的焦距为2c,依题意有$2c=4\sqrt{2}$,$\frac{c}{a}=\frac{{\sqrt{6}}}{3}$,
解得$a=2\sqrt{3}$,b=2,故椭圆C1的标准方程为$\frac{x^2}{12}+\frac{y^2}{4}=1$;
又抛物线C2:x2=2py(p>0)开口向上,故F是椭圆C1的上顶点,
∴F(0,2),∴p=4,故物线C2的标准方程为x2=8y.
(II)显然直线PQ的斜率存在.设直线PQ的方程为y=kx+m,
设P(x1,y1),Q(x2,y2),则$\overrightarrow{FP}=({x_1},{y_1}-2)$,$\overrightarrow{FQ}=({x_2},{y_2}-2)$,
∴$\overrightarrow{FP}•\overrightarrow{FQ}={x_1}{x_2}+{y_1}{y_2}-2({y_1}+{y_2})+4=0$,
即$(1+{k^2}){x_1}{x_2}+(km-2k)({x_1}+{x_2})+{m^2}-4m+4=0$(*),
联立$\left\{\begin{array}{l}y=kx+m\\ \frac{x^2}{12}+\frac{y^2}{4}=1\end{array}\right.$,消去y整理得,(3k2+1)x2+6kmx+3m2-12=0(**).
依题意,x1,x2是方程(**)的两根,△=144k2-12m2+48>0,
∴${x_1}+{x_2}=\frac{-6km}{{3{k^2}+1}}$,${x_1}•{x_2}=\frac{{3{m^2}-12}}{{3{k^2}+1}}$,
将x1+x2和x1•x2代入(*)得m2-m-2=0,解得m=-1,(m=2不合题意,应舍去),
联立$\left\{\begin{array}{l}y=kx-1\\{x^2}=8y\end{array}\right.$,消去y整理得,x2-8kx+8=0,
令△'=64k2-32=0,解得${k^2}=\frac{1}{2}$,经检验${k^2}=\frac{1}{2}$,m=-1符合要求.
故直线PQ的方程为$y=±\frac{{\sqrt{2}}}{2}x-1$.

点评 本题考查椭圆和抛物线的方程的求法,注意运用离心率公式和焦点的坐标,考查直线方程的求法,注意运用直线方程和椭圆方程及抛物线方程联立,运用判别式和韦达定理,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网