题目内容

若函数f(x)=ax2-2ax+1-a在R上的函数值恒大于0,则实数a的取值范围是______.
①当a≠0时,根据二次函数与x轴交点性质得出:
b2-4ac<0,且a>0时,不论x为何值,函数y=ax2+bx+c(a≠0)的值恒大于0,
a>0
△=(2a)2-4a(1-a)<0
  解得 0<a<
1
2

②当a=0时,函数f(x)=ax2-2ax+1-a=1在R上的函数值恒大于0,
故a=0满足题意.
故答案为:[0,
1
2
)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网