题目内容
已知抛物线C:y2=4x,动直线l:y=k(x+1)与抛物线C交于A,B两点,O为原点.(1)求证:
| OA |
| OB |
(2)求满足
| OM |
| OA |
| OB |
分析:(1)由题意知k2x2+(2k2-4)x+k2=0.设A(x1,y1),B(x2,y2),则x1+x2=
-2,x1x2=1.
•
=x1x2+y1y2=x1x2+k2(x1+1)(x2+1)=k2+1+k2(
-2)+k2=5,所以
•
=5为常数.?
(2)
=
+
=(x1+x2,y1+y2)=(
-2,
).?设M(x,y),则y2=4x+8.由此可知M的轨迹方程为y2=4x+8(x>2).
| 4 |
| k2 |
| OA |
| OB |
| 4 |
| k2 |
| OA |
| OB |
(2)
| OM |
| OA |
| OB |
| 4 |
| k2 |
| 4 |
| k |
解答:解:由
得k2x2+(2k2-4)x+k2=0.?
由k≠0,且△>0,得-1<k<1,且k≠0.?
设A(x1,y1),B(x2,y2),则x1+x2=
-2,x1x2=1.?
(1)证明:
•
=x1x2+y1y2
=x1x2+k2(x1+1)(x2+1)?
=(k2+1)x1x2+k2(x1+x2)+k2?
=k2+1+k2(
-2)+k2=5,?
∴
•
=5为常数.?
(2)解:
=
+
=(x1+x2,y1+y2)=(
-2,
).?
设M(x,y),则
消去k得y2=4x+8.?
又∵x=
-2>2,故M的轨迹方程为y2=4x+8(x>2).
|
由k≠0,且△>0,得-1<k<1,且k≠0.?
设A(x1,y1),B(x2,y2),则x1+x2=
| 4 |
| k2 |
(1)证明:
| OA |
| OB |
=x1x2+k2(x1+1)(x2+1)?
=(k2+1)x1x2+k2(x1+x2)+k2?
=k2+1+k2(
| 4 |
| k2 |
∴
| OA |
| OB |
(2)解:
| OM |
| OA |
| OB |
| 4 |
| k2 |
| 4 |
| k |
设M(x,y),则
|
又∵x=
| 4 |
| k2 |
点评:本题考查直线和圆锥曲线的位置关系,解题时要认真审题,仔细解答.
练习册系列答案
相关题目