题目内容
16.已知数列{an}的前n项和Sn满足Sn=2an-n(n∈N*).(1)求证{an+1}为等比数列;
(2)求数列{an}的通项;
(3)若{bn}满足bn=$\frac{{a}_{n+1}+1}{{a}_{n+1}({a}_{n+1}-1)}$,设{bn}的前n项和为Tn,证明:Tn<1.
分析 (1)由Sn=2an-n(n∈N*),可得:当n=1时,a1=2a1-1,解得a1.当n≥2时,an=Sn-Sn-1,变形为an+1=2(an-1+1),即可证明.
(2)由(1)利用等比数列的通项公式可得an=2n-1.
(3)bn=$\frac{{2}^{n+1}}{({2}^{n+1}-1)({2}^{n+1}-2)}$=$\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1}$,利用“裂项求和”与“放缩法”即可得出.
解答 (1)证明:∵Sn=2an-n(n∈N*),∴当n=1时,a1=2a1-1,解得a1=1.
当n≥2时,an=Sn-Sn-1=(2an-n)-[2an-1-(n-1)],化为an+1=2(an-1+1),
∴{an+1}为等比数列,首项为2,公比为2.
(2)解:由(1)可得:1+${a}_{n}=2×{2}^{n-1}$=2n,
∴an=2n-1.
(3)证明:bn=$\frac{{a}_{n+1}+1}{{a}_{n+1}({a}_{n+1}-1)}$=$\frac{{2}^{n+1}}{({2}^{n+1}-1)({2}^{n+1}-2)}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1}$,
∴{bn}的前n项和Tn=$(\frac{1}{2-1}-\frac{1}{{2}^{2}-1})$+$(\frac{1}{{2}^{2}-1}-\frac{1}{{2}^{3}-1})$+…+$(\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1})$
=1-$\frac{1}{{2}^{n+1}-1}$<1,
∴Tn<1.
点评 本题考查了递推式的应用、等比数列的定义及其通项公式、“裂项求和”与“放缩法”、不等式的性质,考查了推理能力与计算能力,属于中档题.
| A. | ac>bc | B. | ac2>bc2 | C. | b(a-b)>c(a-b) | D. | |ac|>|bc| |