题目内容

已知p:x2+mx+1=0有两个不等的负根,q:方程4x2+4(m-2)x+1=0(m∈R)无实根,求:使p为真命题且q也为真命题的m的取值范围.
若p为真,则
△=m2-4>0
-m<0
,解得m>2.
若q为真,则△=16(m-2)2-16<0,解得1<m<3.
由p真,q真,即
m>2
1<m<3

故m的取值范围是(2,3).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网