题目内容

定义在上的函数是奇函数,并且在是减函数,求满足条件取值范围.(  )

A.            B.           C.            D.

 

【答案】

A

【解析】

试题分析:因为,定义在上的函数是奇函数,并且在是减函数,所以,可化为

故有,解得,,故选A。

考点:函数的奇偶性、单调性,简单不等式组的解法。

点评:中档题,涉及抽象不等式解法问题,往往利用函数的奇偶性、单调性,将抽象问题转化成具体不等式组求解,要注意函数的定义域。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网