题目内容
| x2 |
| a2 |
| y2 |
| b2 |
| BM |
| MA |
(1)若λ=1,求
| S1 |
| S2 |
(2)当λ变化时,求
| S1 |
| S2 |
分析:(1)依题意,可求得M(
,
),直线OM的方程为y=
x,与椭圆
+
=1联立可求得C,D两点的坐标,利用点到直线间的距离公式可求得C,D两点到直线AB的距离d与d′,从而可得
的值;
(2)设M(x0,y0),同理可求得x0=
,y0=
及CD的方程,与椭圆方程联立可求得C,D两点的坐标,利用点到直线间的距离公式可求得C,D两点到直线AB的距离d与d′,从而可得
的值.
| a |
| 2 |
| b |
| 2 |
| b |
| a |
| x2 |
| a2 |
| y2 |
| b2 |
| S1 |
| S2 |
(2)设M(x0,y0),同理可求得x0=
| λa |
| 1+λ |
| b |
| 1+λ |
| S1 |
| S2 |
解答:解:(1)∵A(a,0),B(0,b),λ=1,
∴
=
(λ>0),即M为线段AB的中点,
∴M(
,
),
故直线OM的方程为y=
x,与椭圆
+
=1联立,整理得x2=
,
于是C(
,
),D(-
,-
).
∵AB的方程为:
+
=1,即bx+ay-ab=0,
∴点C(
,
)到直线AB的距离d=
=
,
同理可求D(-
,-
)到直线AB的距离d′=
,
所以,
=
=
=(
-1)2.
(2)设M(x0,y0),∵
=λ
(λ>0),
∴(x0,y0-b)=λ(a-x0,-y0),
解得x0=
,y0=
,
∴CD的方程为y=
x,由
得:(1+λ2)x2=λ2a2,
∴x=±
=±
,
∴C(
,
),D(-
,-
),
设C(
,
)到直线AB的距离为d,则d=
,
设D(-
,-
)到直线AB的距离为d′,则d′=
,
∴
=
=
=1-
=1-
=1-
=1-
(λ>0),
∵λ>0,故1+λ2≥2λ,于是0<
≤1,2<1+
≤1+
,
2(
-1)≤
<1,-1<-
≤2(1-
),
∴0<1-
≤1+2(1-
)=3-2
(当且仅当λ=1时取等号).
∴
的取值范围是(0,3-2
].
∴
| BM |
| MA |
∴M(
| a |
| 2 |
| b |
| 2 |
故直线OM的方程为y=
| b |
| a |
| x2 |
| a2 |
| y2 |
| b2 |
| a2 |
| 2 |
于是C(
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
∵AB的方程为:
| x |
| a |
| y |
| b |
∴点C(
| ||
| 2 |
| ||
| 2 |
|
| ||||||||
|
(
| ||
|
同理可求D(-
| ||
| 2 |
| ||
| 2 |
(
| ||
|
所以,
| S1 |
| S2 |
| |d| |
| |d′| |
| ||||||
|
| 2 |
(2)设M(x0,y0),∵
| BM |
| MA |
∴(x0,y0-b)=λ(a-x0,-y0),
解得x0=
| λa |
| 1+λ |
| b |
| 1+λ |
∴CD的方程为y=
| b |
| λa |
|
∴x=±
|
| λa | ||
|
∴C(
| λa | ||
|
| b | ||
|
| λa | ||
|
| b | ||
|
设C(
| λa | ||
|
| b | ||
|
(
| ||||
|
设D(-
| λa | ||
|
| b | ||
|
(
| ||||
|
∴
| S1 |
| S2 |
| |d| |
| |d′| |
1+λ-
| ||
1+λ+
|
2
| ||
1+λ+
|
| 2 | ||||
|
=1-
| 2 | ||||
|
=1-
| 2 | ||||
|
∵λ>0,故1+λ2≥2λ,于是0<
| 2λ |
| 1+λ2 |
1+
|
| 2 |
2(
| 2 |
| 2 | ||||
|
| 2 | ||||
|
| 2 |
∴0<1-
| 2 | ||||
|
| 2 |
| 2 |
∴
| S1 |
| S2 |
| 2 |
点评:本题考查直线与圆锥曲线的关系,考查点到直线间的距离公式及三角形面积公式,考查转化思想与方程思想及综合运算能力,属于难题.
练习册系列答案
相关题目