搜索
题目内容
数列{
a
n
}是等差数列,
S
n
是其前
n
项和,有且S
7
<S
8
,S
8
=S
9
>S
10
,则在下列结论中错误的是
A.a
9
=0 B.d<0
C.S
11
>S
7
D.S
8
与S
9
均为S
n
的最大值
试题答案
相关练习册答案
C
练习册系列答案
期末考试金钥匙系列答案
45分钟课时作业与单元测试系列答案
必会必考精讲点练系列答案
步步高名校练考卷系列答案
系列答案
高中金牌单元测试系列答案
名师一号高中同步学习方略系列答案
华夏1卷通系列答案
课时方案新版新理念导学与测评系列答案
课堂金考卷创优单元测评系列答案
相关题目
已知
i
=(1,0),
j
n
=(co
s
2
nπ
2
,sin
nπ
2
),
P
n
=(
a
n
,sin
nπ
2
)(n∈
N
+
),数列{
a
n
}
满足:
a
1
=1,
a
2
=1,
a
n+2
=(i+
j
n
)•
P
n
.
(I)求证:数列{a
2k-1
}是等差数;数列{a
2k
}是等比数列;(其中k∈N
*
);
(II)记a
n
=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n
2
)-λf(2n)]≤0,求λ的取值范围.
已知
i
=(1,0),
j
n
=(co
s
2
nπ
2
,sin
nπ
2
),
P
n
=(
a
n
,sin
nπ
2
)(n∈
N
+
),数列{
a
n
}
满足:
a
1
=1,
a
2
=1,
a
n+2
=(i+
j
n
)•
P
n
.
(I)求证:数列{a
2k-1
}是等差数;数列{a
2k
}是等比数列;(其中k∈N
*
);
(II)记a
n
=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n
2
)-λf(2n)]≤0,求λ的取值范围.
已知
满足:
.
(I)求证:数列{a
2k-1
}是等差数;数列{a
2k
}是等比数列;(其中k∈N
*
);
(II)记a
n
=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n
2
)-λf(2n)]≤0,求λ的取值范围.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案