题目内容
已知(n,an)(n∈N*)是直线y=2x+1上的一点,数列{bn}满足bn=| 1 | an•an+1 |
分析:由题设条件知bn=
(n∈N*)=
=
(
-
),由此能求出数列{bn}的前10项和S10.
| 1 |
| an•an+1 |
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
解答:解:an=2n+1,
bn=
(n∈N*)=
=
(
-
),
∴S10=b1+b2+b3+…+b10
=
[(
-
)+(
-
)+…+(
-
) ]
=
[(
-
)+(
-
)+…+(
-
)]
=
(
-
)
=
.
故答案为:
.
bn=
| 1 |
| an•an+1 |
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
∴S10=b1+b2+b3+…+b10
=
| 1 |
| 2 |
| 1 |
| 2×1+1 |
| 1 |
| 2×1+3 |
| 1 |
| 2×2+1 |
| 1 |
| 2×2+3 |
| 1 |
| 2×10+1 |
| 1 |
| 2×10+3 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 21 |
| 1 |
| 23 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 23 |
=
| 10 |
| 69 |
故答案为:
| 10 |
| 69 |
点评:本题考查数列的性质和应用,解题时要注意递推公式的合理运用,注意总结规律,提高解题能力.
练习册系列答案
相关题目
已知f(x)为偶函数,且f(1+x)=f(3-x),当-2≤x≤0时,f(x)=3x,若n∈N*,an=f(n),则a2011=( )
A、-
| ||
| B、3 | ||
| C、-3 | ||
D、
|
已知f(x)为偶函数,且f(2+x)=f(2-x),当-2≤x≤0时,f(x)=2x;若n∈N*,an=f(n),则a2009=( )
| A、2009 | ||
| B、-2009 | ||
C、
| ||
D、
|