题目内容

【题目】【选修4-5:不等式选讲】
已知f(x)=|x﹣1|+|x+2|.
(I)若不等式f(x)>a2对任意实数x恒成立,求实数a的取值的集合T;
(Ⅱ)设m、n∈T,证明: |m+n|<|mn+3|.

【答案】(1)解:∵f(x)=|x﹣1|+|x+2|≥|x﹣1﹣x﹣2|=3,不等式f(x)>a2对任意实数x恒成立, ∴3>a2 , ∴﹣ <a<
∴T={a|﹣ <a< };
(Ⅱ)证明:由(1)可得m2<3,n2<3,
∴(m2﹣3)(3﹣n2)<0,
∴3(m+n)2<(mn+3)2
|m+n|<|mn+3|
【解析】(I)利用绝对值三角不等式求得f(x)的最小值为3,可得3>a2 , 由此求得实数a的取值的集合T;(Ⅱ)由(1)可得m2<3,n2<3,再整理,即可证明结论.
【考点精析】利用绝对值不等式的解法对题目进行判断即可得到答案,需要熟知含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网