题目内容
已知奇函数f(x)=loga
,(a>0,且a≠1)
(Ⅰ)求b的值;
(Ⅱ)对于x∈[2,4]f(x)>loga
恒成立,求m的取值范围;
(Ⅲ)当n≥4,且n∈N*时,试比较af(2)+f(3)+…+f(n)与2n-2的大小.
| bx+1 |
| x-1 |
(Ⅰ)求b的值;
(Ⅱ)对于x∈[2,4]f(x)>loga
| m |
| (x-1)2(7-x) |
(Ⅲ)当n≥4,且n∈N*时,试比较af(2)+f(3)+…+f(n)与2n-2的大小.
(Ⅰ)由f(x)=loga
,f(-x)=loga
=loga
f(x)+f(-x)=loga
+loga
=loga
=0
∴
=1恒成立,b2=1,b=±1经检验b=1
(Ⅱ)由x∈[2,4]时,f(x)=loga
>loga
恒成立,
①当a>1时
∴
>
>0对x∈[2,4]恒成立
∴0<m<(x+1)(x-1)(7-x)在x∈[2,4]恒成立
设g(x)=(x+1)(x-1)(7-x),x∈[2,4]
则g(x)=-x3+7x2+x-7g′(x)=-3x2+14x+1=-3(x-
)2+
∴当x∈[2,4]时,g'(x)>0
∴y=g(x)在区间[2,4]上是增函数,g(x)min=g(2)=15
∴0<m<15
②当0<a<1时
由x∈[2,4]时,f(x)=loga
>loga
恒成立,
∴
<
对x∈[2,4]恒成立
∴m>(x+1)(x-1)(7-x)在x∈[2,4]恒成立
设g(x)=(x+1)(x-1)(7-x),x∈[2,4]
由①可知y=g(x)在区间[2,4]上是增函数,g(x)max=g(4)=45
∴m>45
综上,当a>1时,0<m<15;
当0<a<1时,m>45
(Ⅲ)∵f(2)+f(3)++f(n)=loga3+loga
+loga
++loga
+loga
=loga(3×
×
××
×
)=loga
∴af(2)+f(3)++f(n)=
当n=2时,
=3,2n-2=2,∴af(2)+f(3)++f(n)>2n-2
当n=3时,
=6,2n-2=6,∴af(2)+f(3)++f(n)=2n-2
当n≥4时,af(2)+f(3)++f(n)=
<2n-2
下面证明:当n≥4时,af(2)+f(3)++f(n)=
<2n-2
当n≥4时,2n-2=Cn0+Cn1+Cn2++Cnn-1+Cnn-2=Cn1+Cn2++Cnn-1>n+
+n=
>
∴当n≥4时,af(2)+f(3)++f(n)=
<2n-2
h(4)=
-24+2=-4<0n≥4时,
-2n+2<0,即
<2n-2
∴当n≥4时,af(2)+f(3)++f(n)=
<2n-2.
| bx+1 |
| x-1 |
| -bx+1 |
| -x-1 |
| bx-1 |
| x+1 |
| bx+1 |
| x-1 |
| bx-1 |
| x+1 |
| b2x2-1 |
| x2-1 |
∴
| b2x2-1 |
| x2-1 |
(Ⅱ)由x∈[2,4]时,f(x)=loga
| x+1 |
| x-1 |
| m |
| (x-1)2(7-x) |
①当a>1时
∴
| x+1 |
| x-1 |
| m |
| (x-1)2(7-x) |
∴0<m<(x+1)(x-1)(7-x)在x∈[2,4]恒成立
设g(x)=(x+1)(x-1)(7-x),x∈[2,4]
则g(x)=-x3+7x2+x-7g′(x)=-3x2+14x+1=-3(x-
| 7 |
| 3 |
| 52 |
| 3 |
∴当x∈[2,4]时,g'(x)>0
∴y=g(x)在区间[2,4]上是增函数,g(x)min=g(2)=15
∴0<m<15
②当0<a<1时
由x∈[2,4]时,f(x)=loga
| x+1 |
| x-1 |
| m |
| (x-1)2(7-x) |
∴
| x+1 |
| x-1 |
| m |
| (x-1)2(7-x) |
∴m>(x+1)(x-1)(7-x)在x∈[2,4]恒成立
设g(x)=(x+1)(x-1)(7-x),x∈[2,4]
由①可知y=g(x)在区间[2,4]上是增函数,g(x)max=g(4)=45
∴m>45
综上,当a>1时,0<m<15;
当0<a<1时,m>45
(Ⅲ)∵f(2)+f(3)++f(n)=loga3+loga
| 4 |
| 2 |
| 5 |
| 3 |
| n |
| n-2 |
| n+1 |
| n-1 |
| 4 |
| 2 |
| 5 |
| 3 |
| n |
| n-2 |
| n+1 |
| n-1 |
| n(n+1) |
| 2 |
∴af(2)+f(3)++f(n)=
| n(n+1) |
| 2 |
当n=2时,
| n(n+1) |
| 2 |
当n=3时,
| n(n+1) |
| 2 |
当n≥4时,af(2)+f(3)++f(n)=
| n(n+1) |
| 2 |
下面证明:当n≥4时,af(2)+f(3)++f(n)=
| n(n+1) |
| 2 |
当n≥4时,2n-2=Cn0+Cn1+Cn2++Cnn-1+Cnn-2=Cn1+Cn2++Cnn-1>n+
| n(n-1) |
| 2 |
| n2+3n |
| 2 |
| n(n+1) |
| 2 |
∴当n≥4时,af(2)+f(3)++f(n)=
| n(n+1) |
| 2 |
h(4)=
| 4×5 |
| 2 |
| n(n+1) |
| 2 |
| n(n+1) |
| 2 |
∴当n≥4时,af(2)+f(3)++f(n)=
| n(n+1) |
| 2 |
练习册系列答案
相关题目