题目内容
3.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≤0)}\\{-2x(x>0)}\end{array}\right.$,则f[f(x)]=$\left\{\begin{array}{l}{-2({x}^{2}+1)}&{x≤0}\\{4{x}^{2}+1}&{x>0}\end{array}\right.$.分析 可先判断出x≤0时,f(x)>0,而x>0时,f(x)<0,从而得出:x≤0时,f(x2+1)=-2(x2+1),x>0时,f(-2x)=(-2x)2+1,从而可写出f[f(x)]的解析式.
解答 解:x≤0时,f(x)=x2+1≥1,x>0时,f(x)=-2x<0;
∴$f[f(x)]=\left\{\begin{array}{l}{-2({x}^{2}+1)(x≤0)}\\{4{x}^{2}+1(x>0)}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{-2({x}^{2}+1)}&{x≤0}\\{4{x}^{2}+1}&{x>0}\end{array}\right.$.
点评 考查分段函数的定义,已知分段函数f(x),求f[f(x)]的方法.
练习册系列答案
相关题目
14.S=(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1)+1,则合并同类项后S=( )
| A. | (x-2)5 | B. | (x+1)5 | ||
| C. | x5 | D. | x5+5x4+10x3+10x2+5x+1 |