题目内容
用数学归纳法证明:
+
+…+
<1(n∈N*).
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
证明:当n=1时,左边=
<1成立;
假设当n=k时,结论成立,即
+
+…+
<1
则n=k+1时,左边=
+
+…+
=
+
(
+
+…+
)<
+
=1
∴n=k+1时,结论成立
综上,
+
+…+
<1(n∈N*).
| 1 |
| 2 |
假设当n=k时,结论成立,即
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2k |
则n=k+1时,左边=
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2k+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2k |
| 1 |
| 2 |
| 1 |
| 2 |
∴n=k+1时,结论成立
综上,
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
练习册系列答案
相关题目