题目内容

(2011•南通一模)用数学归纳法证明:1×2×3+2×3×4+…+n×(n+1)×(n+2)=
n(n+1)(n+2)(n+3)4
(n∈N*)
分析:先证明n=1时,结论成立,再设当n=k(k∈N*)时,等式成立,利用假设证明n=k+1时,等式成立即可.
解答:证明:(1)当n=1时,左边=1×2×3=6,右边=
1×2×3×4
4
=6
=左边,∴等式成立.
(2)设当n=k(k∈N*)时,等式成立,
1×2×3+2×3×4+…+k×(k+1)×(k+2)=
k(k+1)(k+2)(k+3)
4
.  
则当n=k+1时,
左边=1×2×3+2×3×4+…+k×(k+1)×(k+2)+(k+1)(k+2)(k+3)
=
k(k+1)(k+2)(k+3)
4
+(k+1)(k+2)(k+3)
=(k+1)(k+2)(k+3)(
k
4
+1)=
(k+1)(k+2)(k+3)(k+4)
4
=
(k+1)(k+1+1)(k+1+2)(k+1+3)
4
.

∴n=k+1时,等式成立.
由(1)、(2)可知,原等式对于任意n∈N*成立.
点评:本题考查数学归纳法证明等式问题,证题的关键是利用归纳假设证明n=k+1时,等式成立,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网