题目内容
已知函数f(x)=x2-x,g(x)=lnx-f(x)f'(x)
(1)求g(x)的最大值及相应x的值;
(2)对任意的正数x,恒有f(x)+f(
)≥(x+
)ln(m2-2m-2),求实数m的最大值.
(1)求g(x)的最大值及相应x的值;
(2)对任意的正数x,恒有f(x)+f(
| 1 |
| x |
| 1 |
| x |
解(1)g(x)=lnx-(x2-x)(2x-1)=lnx-2x3+3x2-x,
g′(x)=
-6x2+6x-1=
,(x>0),
当0<x<1时,g'(x)>0;当x>1时,g'(x)<0,
所以g(x)在(0,1]上是增函数,在[1,+∞)上是减函数,
所以,当x=1时,g(x)取得最大值g(1)=0;
(2)f(x)+f(
)≥(x+
)ln(m2-2m-2),即(x2-x+
-
)≥(x+
)ln(m2-2m-2),
可化为(x+
)2-2-(x+
)≥(x+
)ln(m2-2m-2)①,
因为x>0,所以x+
≥2(当x=1时取到等号),
设x+
=t(t≥2),①可化为t2-2-t≥tln(m2-2m-2),即ln(m2-2m-2)≤t-
-1当t≥2时恒成立,
令h(t)=t-
-1,h′(x)=1+
>0,
所以h(t)在[2,+∞)上是增函数,所以h(t)≥h(2)=0,于是ln(m2-2m-2)≤0,
解不等式0<m2-2m-2≤1,解得-1≤m<1-
,1+
<m≤3,
所以m的最大值为3.
g′(x)=
| 1 |
| x |
| (1-x)(6x2+1) |
| x |
当0<x<1时,g'(x)>0;当x>1时,g'(x)<0,
所以g(x)在(0,1]上是增函数,在[1,+∞)上是减函数,
所以,当x=1时,g(x)取得最大值g(1)=0;
(2)f(x)+f(
| 1 |
| x |
| 1 |
| x |
| 1 |
| x2 |
| 1 |
| x |
| 1 |
| x |
可化为(x+
| 1 |
| x |
| 1 |
| x |
| 1 |
| x |
因为x>0,所以x+
| 1 |
| x |
设x+
| 1 |
| x |
| 2 |
| t |
令h(t)=t-
| 2 |
| t |
| 2 |
| t2 |
所以h(t)在[2,+∞)上是增函数,所以h(t)≥h(2)=0,于是ln(m2-2m-2)≤0,
解不等式0<m2-2m-2≤1,解得-1≤m<1-
| 3 |
| 3 |
所以m的最大值为3.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|