题目内容

在△ABC中,已知(sinA+sinB+sinC)(sinB+sinC-sinA)=3sinBsinC.
(1)求角A的值;
(2)求
3
sinB-cosC
的最大值.
(1)∵(sinA+sinB+sinC)(sinB+sinC-sinA)=3sinBsinC,
∴(sinB+sinC)2-sin2A=3sinBsinC,
∴sin2B+sin2C-sin2A--sinBsinC=0,
由正弦定理
a
sinA
=
b
sinB
=
c
sinC
=2R得:b2+c2-a2-bc=0,
又由余弦定理知,a2=b2+c2-2bccosA,
∴cosA=
1
2
,角A=60°.
(2)∵角A=60°,在△ABC中,A+B+C=180°,
∴B=120°-C,
3
sinB-cosC
=
3
sin(120°-C)-cosC
=
3
3
2
cosC-(-
1
2
)sinC)-cosC
=
1
2
cosC+
3
2
sinC
=sin(C+
π
6
),
∵C∈(0°,120°),
[sin(C+
π
6
)]
max
=1,即
3
sinB-cosC得最大值为1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网