题目内容

已知{an}是等差数列,其中a3+a7=18,a6=11.
(Ⅰ)求数列{an}通项an
(Ⅱ)若数列{bn}满足bn=an+2n-1(n∈N+),求数列{bn}的前n项和Tn
(Ⅰ)∵a3+a7=2a5=18
∴a5=9
∴d=a6-a5=11-9=2,a1=1
∴an=2n-1
(Ⅱ)∵bn=an+2n-1(n∈N+
∴bn=2n-1+2n-1
∴Tn=(1+20)+(3+21)+…+[(2n-1)+2n-1]
=[1+3+…+(2n-1)]+(20+21+…+2n-1
=n2+2n-1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网