题目内容
6.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有3f(x)+xf′(x)>0,则不等式(x+2017)3f(x+2017)+27f(-3)>0的解集是( )| A. | (-2020,-2017) | B. | (-∞,-2017) | C. | (-2018,-2017) | D. | (-∞,-2020) |
分析 根据条件,构造函数,利用函数的单调性和导数之间的关系,将不等式进行转化即可得到结论.
解答 解:由3f(x)+xf′(x)>0,(x<0),
得:3x2f(x)+x3f′(x)>0,
即[x3f(x)]′>0,
令F(x)=x3f(x),
则当x<0时,
得F′(x)>0,即F(x)在(-∞,0)上是增函数,
∴F(x+2017)=(x+2017)3f(x+2017),F(-3)=-27f(-3),
即不等式等价为F(x+2017)>F(-3),
∵F(x)在(-∞,0)是增函数,
∴由F(x+2017)>F(-3)得,x+2017>-3,
即x>-2020,而x+2017<0,故x<-2017,
故选:A.
点评 本题主要考查不等式的解法,利用条件构造函数,利用函数单调性和导数之间的关系是解决本题的关键.
练习册系列答案
相关题目
16.已知函数f(x)=(2-x)ex-ax-a,若不等式f(x)>0恰有两个正整数解,则a的取值范围是( )
| A. | [-$\frac{1}{4}$e3,0) | B. | [-$\frac{1}{2}$e,0) | C. | [-$\frac{1}{4}$e3,$\frac{e}{2}$) | D. | [-$\frac{1}{4}$e3,2) |
17.已知函数$f(x)=cos(\frac{π}{2}+x)+{sin^2}(\frac{π}{2}+x)$,x∈[-π,0],则f(x)的最大值为( )
| A. | $\frac{3}{4}$ | B. | $\frac{5}{4}$ | C. | 1 | D. | 2$\sqrt{2}$ |
1.若$0<{θ_1}<{θ_2}<\frac{π}{2}$,则必有( )
| A. | ${e^{cos{θ_1}}}-{e^{cos{θ_2}}}>lncos{θ_1}-lncos{θ_2}$ | |
| B. | ${e^{cos{θ_1}}}-{e^{cos{θ_2}}}<lncos{θ_1}-lncos{θ_2}$ | |
| C. | $cos{θ_2}{e^{cos{θ_1}}}>cos{θ_1}{e^{cos{θ_2}}}$ | |
| D. | $cos{θ_2}{e^{cos{θ_1}}}<cos{θ_1}{e^{cos{θ_2}}}$ |
11.等差数列{an}中,已知a2+a10=16,则a4+a6+a8=( )
| A. | 16 | B. | 20 | C. | 24 | D. | 28 |
18.已知a=0.5${\;}^{\frac{1}{3}}$,b=($\frac{3}{5}$)${\;}^{-\frac{1}{3}}$,c=log2.51.5,则a,b,c的大小关系( )
| A. | c<a<b | B. | b<a<c | C. | a<b<c | D. | c<b<a |