题目内容
(1)已知tanα=
,
的值.
(2)已知
<α<
,0<β<
,且cos(
-α)=
,sin(
+β)=
,求sin(α+β)的值.
| 2 |
| 3 |
| 1 |
| sin2α-2sinαcosα+4cos2α |
(2)已知
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 3 |
| 5 |
| π |
| 4 |
| 5 |
| 13 |
分析:(1)利用同角三角函数的平方关系,商数关系,弦化切,即可得出结论;
(2)利用同角三角函数的平方关系,角的变换,可得结论.
(2)利用同角三角函数的平方关系,角的变换,可得结论.
解答:解:(1)
=
=
∵tanα=
,∴
=
;
(2)∵
<α<
,0<β<
,且cos(
-α)=
,sin(
+β)=
,
∴sin(
-α)=-
,cos(
+β)=
,
∴sin(α+β)=sin[(
+β)-(
-α)]=
•
-
•(-
)=
.
| 1 |
| sin2α-2sinαcosα+4cos2α |
| sin2α+cos2α |
| sin2α-2sinαcosα+4cos2α |
| tan2α+1 |
| tan2α-2tanα+4 |
∵tanα=
| 2 |
| 3 |
| tan2α+1 |
| tan2α-2tanα+4 |
| 13 |
| 28 |
(2)∵
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 3 |
| 5 |
| π |
| 4 |
| 5 |
| 13 |
∴sin(
| π |
| 4 |
| 4 |
| 5 |
| π |
| 4 |
| 12 |
| 13 |
∴sin(α+β)=sin[(
| π |
| 4 |
| π |
| 4 |
| 5 |
| 13 |
| 3 |
| 5 |
| 12 |
| 13 |
| 4 |
| 5 |
| 63 |
| 65 |
点评:本题考查同角三角函数的平方关系,考查角的变换,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目