题目内容
设公比小于零的等比数列{an}的前n项和为Sn,且a1=-1,S3=3a3.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn=an+2n-1,求数列{bn}的前n项Tn.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn=an+2n-1,求数列{bn}的前n项Tn.
(Ⅰ)∵公比小于零的等比数列{an}的前n项和为Sn,且a1=-1,S3=3a3,
∴S3=a1+a1q+a1q2=-1-q-q2=-3,
∴q2+q-2=0,解得q=-2,或q=1(舍).
∴an=(-1)•(-2)n-1.
(Ⅱ)∵数列{bn}满足bn=an+2n-1,
∴Tn=b1+b2+b3+…+bn
=(a1+1)+(a2+3)+(a3+5)+…+[an+(2n-1)]
=(a1+a2+a3+…+an)+[1+3+5+…(2n-1)]
=(-1)•
+
[1+(2n-1)]
=-
+n2.
∴S3=a1+a1q+a1q2=-1-q-q2=-3,
∴q2+q-2=0,解得q=-2,或q=1(舍).
∴an=(-1)•(-2)n-1.
(Ⅱ)∵数列{bn}满足bn=an+2n-1,
∴Tn=b1+b2+b3+…+bn
=(a1+1)+(a2+3)+(a3+5)+…+[an+(2n-1)]
=(a1+a2+a3+…+an)+[1+3+5+…(2n-1)]
=(-1)•
| 1×[1-(-2)n] |
| 1-(-2) |
| n |
| 2 |
=-
| 1-(-2)n |
| 3 |
练习册系列答案
相关题目