题目内容

已知,且

1.设,求的解析式;

2.设,试问:是否存在实数,使内为减函数,且在(-1,0)内是增函数.

1.由题意得

2.

若满足条件的存在,则

∵函数内是减函数,∴当时,

对于恒成立.

,解得

又函数在(-1,0)上是增函数,∴当时,

对于恒成立,

,解得

故当时,上是减函数,在(-1,0)上是增函数,即满足条件的存在.


解析:

根据题设条件可以求出的表达式,对于探索性问题,一般先对结论做肯定存在的假设,然后由此肯定的假设出发,结合已知条件进行推理论证,由推证结果是否出现矛盾来作出判断.解题的过程实质是一种转化的过程,由于函数是可导函数,因此选择好解题的突破口,要充分利用函数的单调性构造等价的不等式,确定适合条件的参数的取值范围,使问题获解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网