题目内容
(2010•和平区一模)在数列{an}中,a1=1,an+1=
(c为常数,n∈N*),且a1,a2,a5成公比不为1的等比数列.
(Ⅰ)求证:数列{
}是等差数列;
(Ⅱ)求c的值;
(Ⅲ)设bn=anan+1,求数列{bn}的前n项和Sn.
| an |
| c•an+1 |
(Ⅰ)求证:数列{
| 1 |
| an |
(Ⅱ)求c的值;
(Ⅲ)设bn=anan+1,求数列{bn}的前n项和Sn.
分析:(Ⅰ)通过已知条件,方程去倒数,即可推出数列满足等差数列的定义,说明数列{
}是等差数列;
(Ⅱ)通过第一问,直接求出a1,a2,a5,利用等比数列直接求出c的值;
(Ⅲ)通过第二问,求出an,然后利用bn=anan+1,通过裂项法直接求数列{bn}的前n项和Sn.
| 1 |
| an |
(Ⅱ)通过第一问,直接求出a1,a2,a5,利用等比数列直接求出c的值;
(Ⅲ)通过第二问,求出an,然后利用bn=anan+1,通过裂项法直接求数列{bn}的前n项和Sn.
解答:解:(Ⅰ)因为a1=1,an+1=
,所以an≠0,
则
-
=
-
=c,又c为常数,
∴数列{
}是等差数列;
(Ⅱ)由(Ⅰ)可知
=
+(n-1)c=1+(n-1)c,
∵a1=1,∴a2=
,a5=
,
∵a1,a2,a5成公比不为1的等比数列,所以(
)2=
,
解得c=0或c=2,当c=0时,an=an+1,不满足题意,舍去,
所以c的值为2;
(Ⅲ)由(Ⅱ)可知c=2,∴an=
,
bn=anan+1=
•
=
(
-
),
所以数列{bn}的前n项和
Sn=
[(1-
)+(
-
)+…+(
-
)]=
(1-
)
| an |
| c•an+1 |
则
| 1 |
| an+1 |
| 1 |
| an |
| c•an+1 |
| an |
| 1 |
| an |
∴数列{
| 1 |
| an |
(Ⅱ)由(Ⅰ)可知
| 1 |
| an |
| 1 |
| a1 |
∵a1=1,∴a2=
| 1 |
| 1+c |
| 1 |
| 1+4c |
∵a1,a2,a5成公比不为1的等比数列,所以(
| 1 |
| 1+c |
| 1 |
| 1+4c |
解得c=0或c=2,当c=0时,an=an+1,不满足题意,舍去,
所以c的值为2;
(Ⅲ)由(Ⅱ)可知c=2,∴an=
| 1 |
| 2n-1 |
bn=anan+1=
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
所以数列{bn}的前n项和
Sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
点评:本题考查等比数列与等差数列的综合应用,数列的递推关系式的应用,裂项法求和,考查分析问题解决问题的能力.
练习册系列答案
相关题目