题目内容

已知函数f(x)=x2-2(-1)klnx(k∈N*)存在极值,则k的取值集合是(  )
A.{2,4,6,8,…}B.{0,2,4,6,8,…}
C.{l,3,5,7,…}D.N*
∵k∈N*
①当k的取值集合是{2,4,6,8,…}时,函数f(x)=x2-2lnx,
∴f'(x)=2x-
2
x
=
2(x+1)(x-1)
x
,由f'(x)=0得x=-1,或x=1.
当x∈(-∞,-1)或x∈(1,+∞)时,y′>0;
当x∈(-1,1)时,y′<0
∴当x=-1和x=1是函数的极值点.
②当k的取值集合是{l,3,5,7,…}时,函数f(x)=x2+2lnx,
∴f'(x)=2x+
2
x
=
2(x2+1)
x
,由f'(x)=0得x∈∅.故此时原函数不存在极值点.
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网