题目内容
(2004•宁波模拟)(理){an}是等差数列,公差d>0,Sn是{an}的前n项和.已知a2a3=40.S4=26.
(1)求数列{an}的通项公式an;
(2)令bn=
,求数列{bn}前n项和Tn.
(1)求数列{an}的通项公式an;
(2)令bn=
| 1 | anan+1 |
分析:(1)由已知 已知a2a3=40及S4=26,求出a2=5,a3=8,从而公差d=3,根据an=a2+(n-2)d,求出数列{an}的
通项公式.
(2)对数列{bn}的通项公式进行裂项为bn=
(
-
),从而求出其前n项的和Tn=
[(
-
)+(
-
)+…+(
-
)],化简得到结果.
通项公式.
(2)对数列{bn}的通项公式进行裂项为bn=
| 1 |
| 3 |
| 1 |
| 3n-1 |
| 1 |
| 3n+2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 8 |
| 1 |
| 3n-1 |
| 1 |
| 3n+2 |
解答:解:(1)∵S4=
(a1+a4)=2(a2+a3)=26,…(2分)
又∵a2a3=40,d>0,
∴a2=5,a3=8,d=3.…(4分)
∴an=a2+(n-2)d=3n-1.…(6分)
(2)∵bn=
=
=
(
-
),…(9分)
故有 Tn=
[(
-
)+(
-
)+…+(
-
)]=
(
-
)=
.…(12分)
| 4 |
| 2 |
又∵a2a3=40,d>0,
∴a2=5,a3=8,d=3.…(4分)
∴an=a2+(n-2)d=3n-1.…(6分)
(2)∵bn=
| 1 |
| anan+1 |
| 1 |
| (3n-1)(3n+2) |
| 1 |
| 3 |
| 1 |
| 3n-1 |
| 1 |
| 3n+2 |
故有 Tn=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 8 |
| 1 |
| 3n-1 |
| 1 |
| 3n+2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3n+2 |
| n |
| 2(3n+2) |
点评:本题主要考查等差数列的定义和性质,等差数列的通项公式,用裂项法对数列进行求和,求出首项和公差d的值,
是解题的关键,属于中档题.
是解题的关键,属于中档题.
练习册系列答案
相关题目