题目内容
在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=
b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面积.
【答案】
(1)
(2) ![]()
【解析】
解:(1)由2asinB=
b及正弦定理
=
,
得sinA=
.
因为A是锐角,所以A=
.
(2)由余弦定理a2=b2+c2-2bccosA,
得b2+c2-bc=36.
又b+c=8,所以bc=
.
由三角形面积公式S=
bcsinA,
得△ABC的面积为
×
×
=
.
练习册系列答案
相关题目
己知在锐角ΔABC中,角
所对的边分别为
,且![]()
(I )求角
大小;
(II)当
时,求
的取值范围.
![]()
20.如图1,在平面内,
是
的矩形,
是正三角形,将
沿
折起,使
如图2,
为
的中点,设直线
过点
且垂直于矩形
所在平面,点
是直线
上的一个动点,且与点
位于平面
的同侧。
(1)求证:
平面
;
(2)设二面角
的平面角为
,若
,求线段
长的取值范围。
![]()
![]()
21.已知A,B是椭圆
的左,右顶点,
,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线
于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点
(1)求椭圆C的方程;
(2)求三角形MNT的面积的最大值
22. 已知函数
,
(Ⅰ)若
在
上存在最大值与最小值,且其最大值与最小值的和为
,试求
和
的值。
(Ⅱ)若
为奇函数:
(1)是否存在实数
,使得
在
为增函数,
为减函数,若存在,求出
的值,若不存在,请说明理由;
(2)如果当
时,都有
恒成立,试求
的取值范围.