题目内容

(本小题12分)如图,甲船以每小时30海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里.当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里,问乙船每小时航行多少海里?

 

【答案】

乙船每小时航行30海里

【解析】

试题分析:如图所示,连结A1B2.

由已知A2B2=10A1A2=30×=10

A1A2A2B2.又∠A1A2B2=180°-120°=60°,

∴△A1A2B2是等边三角形,

A1B2A1A2=10.

由已知A1B1=20,∠B1A1B2=105°-60°=45°.

在△A1B2B1中,由余弦定理得

=202+(10)2-2×20×10×

=200,

B1B2=10.

因此,乙船的速度为×60=30 (海里/小时).

答:乙船每小时航行30海里

考点:解三角形的运用

点评:解决的关键是通过作图来得到对应的三角形,然后分析边和角,结合余弦定理来求解得到,属于基础题。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网