题目内容
设
的导数为
,若函数
的图象关于直线
对称,且
.
(Ⅰ)求实数
,
的值;
(Ⅱ)求函数
的单调区间.
【解析】第一问中
,由于函数
的图象关于直线
对称,所以![]()
.
又![]()
∴![]()
第二问中由(Ⅰ),
,![]()
令![]()
,或
;![]()
![]()
∴函数
在
及
上递增,在
上递减.
【答案】
(Ⅰ)
(Ⅱ)函数
在
及
上递增,在
上递减.
练习册系列答案
相关题目