题目内容

直线y=2x与曲线y=x2所围成封闭图形的面积为   
【答案】分析:联立解曲线y=x2及直线y=2x,得它们的交点是O(0,0)和A(2,2),由此可得两个图象围成的面积等于函数y=2x-x2在[0,2]上的积分值,根据定义分计算公式加以计算,即可得到所求面积.
解答:解:由,解得
∴曲线y=x2及直线y=2x的交点为O(0,0)和A(2,2)
因此,曲线y=x2及直线y=2x所围成的封闭图形的面积是
S=(2x-x2)dx=(x2-x3=
故答案为:
点评:本题给出曲线y=x2及直线y=2x,求它们围成的图形的面积,着重考查了定积分的几何意义和定积分计算公式等知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网