题目内容
已知cos(α-
)=-
,sin(
-β)=
,其中
<α<π,0<β<
.求cos
的值.
| β |
| 2 |
| ||
| 3 |
| α |
| 2 |
4
| ||
| 9 |
| π |
| 2 |
| π |
| 2 |
| α+β |
| 2 |
分析:首先根据角的范围和同角三角函数的基本关系求出sin(α-
)和cos(
-β)的值,然后由两角和与差公式展开cos
=cos[(α-
)-(
-β)],将相应的值代入即可.
| β |
| 2 |
| α |
| 2 |
| α+β |
| 2 |
| β |
| 2 |
| α |
| 2 |
解答:解:∵
<α<π,0<β<
cos(α-
)=-
,
∴0<
<
<
<
sin(α-
)=
=
cos(
-β)=
2=
∴cos
=cos[(α-
)-(
-β)]=cos(α-
)cos(
-β)+sin(α-
)sin(
-β)=-
×
+
×
=
| π |
| 2 |
| π |
| 2 |
| β |
| 2 |
| ||
| 3 |
∴0<
| β |
| 2 |
| π |
| 4 |
| π |
| 4 |
| α |
| 2 |
| π |
| 2 |
sin(α-
| β |
| 2 |
1-(-
|
| ||
| 3 |
cos(
| α |
| 2 |
1-(
|
| 7 |
| 9 |
∴cos
| α+β |
| 2 |
| β |
| 2 |
| α |
| 2 |
| β |
| 2 |
| α |
| 2 |
| β |
| 2 |
| α |
| 2 |
| ||
| 3 |
| 7 |
| 9 |
4
| ||
| 9 |
| ||
| 3 |
| ||
| 27 |
点评:此题考查了两角和与差公式,巧用cos
=cos[(α-
)-(
-β)]是解题的关键,属于中档题.
| α+β |
| 2 |
| β |
| 2 |
| α |
| 2 |
练习册系列答案
相关题目