题目内容

在五棱锥P-ABCDE中,PA=AB=AE=4a,PB=PE=a,BC=DE=2a,∠EAB=∠ABC=∠DEA=90°.(1)若中点,求证:平面.

(2)求二面角A-PD-E的正弦值;(3)求点C到平面PDE的距离.

(1)见解析

(2)二面角A-PD-E的正弦值为

(3) a


解析:

(1)∵∠AED=90°,∴AEED.∵PA⊥平面ABCDE,∴PAED.∴ED⊥平面PAE,所以DEAG中点,所以AGPEDEPE=E,AG⊥平面PDE  ………………………(4分)

(2)∵∠AED=90°,∴AEED

PA⊥平面ABCDE,∴PAED.∴ED⊥平面PAE

AAGPEG,过DEAG,∴AG⊥平面PDE.过GGHPDH,连AH

由三垂线定理得AHPD.∴∠AHG为二面角A-PD-E的平面角.

在直角△PAE中,AG=2a.在直角△PAD中,AHa

∴在直角△AHG中,sin∠AHG

∴二面角A-PD-E的正弦值为.        …………………………………………..( 8分)

(3)∵∠EAB=∠ABC=∠DEA=90°,  BC=DE=2a,AB=AE=4a,

AE中点F,连CF,∵AF∥=BC,∴四边形ABCF为平行四边形.

CFAB,而ABDE,∴CFDE,而DE平面PDECF平面PDE

CF∥平面PDE.∴点C到平面PDE的距离等于F到平面PDE的距离.

PA⊥平面ABCDE,∴PADE

又∵DEAE,∴DE⊥平面PAE.∴平面PAE⊥平面PDE

∴过F作FG⊥PE于G,则FG⊥平面PDE.∴FG的长即F点到平面PDE的距离.在△PAE中,PA=AE=4a,F为AE中点,FG⊥PE,  

∴FG=a. ∴点C到平面PDE的距离为a.(或用等体积法求)…………(12分)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网