题目内容

已知数列{an}等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=(  )
分析:由等差数列得性质可得:5a5=10,即a5=2.同理可得5a6=20,a6=4,再由等差中项可知:a4=2a5-a6=0
解答:解:由等差数列得性质可得:a1+a9=a3+a7=2a5,又a1+a3+a5+a7+a9=10,
故5a5=10,即a5=2.同理可得5a6=20,a6=4.
再由等差中项可知:a4=2a5-a6=0 
故选B
点评:本题考查等差数列的性质及等差中项,熟练利用性质是解决问题的关键,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网