题目内容

在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知sinA=
2
2
3

(1)求cos(B+C)的值;
(2)若a=2,S△ABC=
2
,求b的值.
(1)∵sinA=
2
2
3
,A为锐角,∴cosA=
1-(
2
2
3
)
2
=
1
3

∵B+C=π-A,∴cos(B+C)=cos(π-A)=-cosA=-
1
3

(2)由S△ABC=
1
2
bcsinA=
2
3
bc=
2
,得到bc=3①,
∵a=2,cosA=
1
3

根据余弦定理a2=b2+c2-2bccosA得:4=b2+c2-
2
3
bc=b2+c2-2,即b2+c2=6②,
②+2×①得:(b+c)2=12,解得b+c=2
3

②-2×①得:(b-c)2=0,解得b-c=0,即b=c,
所以b=c=
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网