题目内容

(06年北京卷文)(14分)

设等差数列{an}的首项a1及公差d都为整数,前n项和为Sn.

(Ⅰ)若a11=0,S14=98,求数列{an}的通项公式;

(Ⅱ)若a1≥6,a11>0,S14≤77,求所有可能的数列{an}的通项公式.

解析:(Ⅰ)由S14=98得2a1+13d=14,

又a11=a1+10d=0,

故解得d=-2,a1=20.

因此,{an}的通项公式是an=22-2n,n=1,2,3…

(Ⅱ)由得            即

由①+②得-7d<11。

即d>-

由①+③得13d≤-1

即d≤-

于是-<d≤-

又d∈Z,故

d=-1

将④代入①②得10<a1≤12.

又a1∈Z,故a1=11或a1=12.

所以,所有可能的数列{an}的通项公式是

an=12-n和an=13-n,n=1,2,3,…

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网