题目内容
分析:连接OC,先证得三角形OBC是等边三角形,从而得到∠DCA=60°,再在直角三角形ACD中得到∠DAC的大小;考虑到直角三角形ABE中,利用角的关系即可求得边AE的长.
解答:
解:如图,连接OC,因BC=OB=OC=3,
因此∠CBO=60°,由于∠DCA=∠CBO,
所以∠DCA=60°,又AD⊥DC得∠DAC=30°;(5分)
又因为∠ACB=90°,
得∠CAB=30°,那么∠EAB=60°,
从而∠ABE=30°,
于是AE=
AB=3.(10分)
因此∠CBO=60°,由于∠DCA=∠CBO,
所以∠DCA=60°,又AD⊥DC得∠DAC=30°;(5分)
又因为∠ACB=90°,
得∠CAB=30°,那么∠EAB=60°,
从而∠ABE=30°,
于是AE=
| 1 |
| 2 |
点评:本题主要考查了弦切角、解三角形知识等,属于基础题.
练习册系列答案
相关题目