题目内容
设A1,A2,A3,A4 是平面上给定的4个不同点,则使
+
+
+
=
成立的点M 的个数为( )
| MA1 |
| MA2 |
| MA3 |
| MA4 |
| 0 |
| A.0 | B.1 | C.2 | D.4 |
根据所给的四个向量的和是一个零向量
+
+
+
=
,
则
-
+
-
+
-
+
-
=
,
即4
=
+
+
+
,
所以
=
(
+
+
+
).
当A1,A2,A3,A4 是平面上给定的4个不同点确定以后,则
也是确定的,
所以满足条件的M只有一个,
故选B.
| MA1 |
| MA2 |
| MA3 |
| MA4 |
| 0 |
则
| OA1 |
| OM |
| OA2 |
| OM |
| OA3 |
| OM |
| OA4 |
| OM |
| 0 |
即4
| OM |
| OA1 |
| OA2 |
| OA3 |
| OA4 |
所以
| OM |
| 1 |
| 4 |
| OA1 |
| OA2 |
| OA3 |
| OA4 |
当A1,A2,A3,A4 是平面上给定的4个不同点确定以后,则
| OM |
所以满足条件的M只有一个,
故选B.
练习册系列答案
相关题目