题目内容
设非零向量
,
,
满足
=
=
,
+
=
,则<
,
>=
| a |
| b |
| c |
| |a| |
| |b| |
| |c| |
| a |
| b |
| c |
| a |
| b |
120°
120°
.分析:由题意可推出
•
=-
|
|2,代入夹角公式可得cos<
,
>=
=
=-
,由夹角的范围可得答案.
| a |
| b |
| 1 |
| 2 |
| b |
| a |
| b |
| ||||
|
|
-
| ||||
|
|
| 1 |
| 2 |
解答:解:因为
+
=
,所以
=-(
+
),所以|
|=|-(
+
)|=|
+
|,
所以
2=
2+2
•
+
2,即
•
=-
|
|2,
所以cos<
,
>=
=
=-
,
由向量夹角的范围可得<
,
>=120°.
故答案为:120°
| a |
| b |
| c |
| c |
| a |
| b |
| c |
| a |
| b |
| a |
| b |
所以
| c |
| a |
| a |
| b |
| b |
| a |
| b |
| 1 |
| 2 |
| b |
所以cos<
| a |
| b |
| ||||
|
|
-
| ||||
|
|
| 1 |
| 2 |
由向量夹角的范围可得<
| a |
| b |
故答案为:120°
点评:本题考查向量夹角的求解,涉及向量的数量积的运算,属中档题.
练习册系列答案
相关题目