题目内容

已知正数x,y满足x+2y=1,则
1
x
+
1
y
的最小值为(  )
A、6
B、5
C、3+2
2
D、4
2
分析:将原式子变形为
1
x
+
1
y
=
x+2y
x
+
x+2y
y
=1+
2y
x
+
x
y
+2,使用基本不等式,求得最小值.
解答:解:∵正数x,y满足x+2y=1,∴
1
x
+
1
y
=
x+2y
x
+
x+2y
y
=1+
2y
x
+
x
y
+2 
≥3+2
2y
x
x
y
=3+2
2
,当且仅当
2y
x
=
x
y
时,等号成立,
故选C.
点评:本题考查基本不等式的应用,变形是解题的关键和难点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网