题目内容

数列{an}前n项和为Sn=n2+2n,等比数列{bn}各项为正数,且b1=1,{ban}是公比为64的等比数列.
(1)求数列{an}与{bn}的通项公式;
(2)证明:
1
S1
+
1
S2
+…+
1
Sn
3
4
(1)当n=1时,a1=S1=3,
n≥2时,an=Sn-Sn-1=(n2+2n)-{(n-1)2+2(n-1)}=2n+1
经验证,当n=1时,上式也适合,故an=2n+1.
设{bn}公比为q,则
ba2
ba1
=
b5
b3
=q2=64

因为{bn}各项为正数所以q=8,∴bn=8n-1
故数列{an}与{bn}的通项公式分别为:an=2n+1,bn=8n-1
(2)由题意可知
1
Sn
=
1
n2+2n
=
1
2
(
1
n
-
1
n+2
)

1
S1
+
1
S2
+…
1
Sn
=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)=
3
4
-
1
2
(
1
n+1
+
1
n+2
)<
3
4

故原不等式得证.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网