题目内容
数列{an}前n项和为Sn=n2+2n,等比数列{bn}各项为正数,且b1=1,{ban}是公比为64的等比数列.
(1)求数列{an}与{bn}的通项公式;
(2)证明:
+
+…+
<
.
(1)求数列{an}与{bn}的通项公式;
(2)证明:
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 3 |
| 4 |
(1)当n=1时,a1=S1=3,
n≥2时,an=Sn-Sn-1=(n2+2n)-{(n-1)2+2(n-1)}=2n+1
经验证,当n=1时,上式也适合,故an=2n+1.
设{bn}公比为q,则
=
=q2=64,
因为{bn}各项为正数所以q=8,∴bn=8n-1,
故数列{an}与{bn}的通项公式分别为:an=2n+1,bn=8n-1
(2)由题意可知
=
=
(
-
)
∴
+
+…
=
(1-
+
-
+
-
+…+
-
)
=
(1+
-
-
)=
-
(
+
)<
故原不等式得证.
n≥2时,an=Sn-Sn-1=(n2+2n)-{(n-1)2+2(n-1)}=2n+1
经验证,当n=1时,上式也适合,故an=2n+1.
设{bn}公比为q,则
| ba2 |
| ba1 |
| b5 |
| b3 |
因为{bn}各项为正数所以q=8,∴bn=8n-1,
故数列{an}与{bn}的通项公式分别为:an=2n+1,bn=8n-1
(2)由题意可知
| 1 |
| Sn |
| 1 |
| n2+2n |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
故原不等式得证.
练习册系列答案
相关题目